Catalysis of Amide Hydrolysis due to Micelles Containing Imidazole and Hydroxy Functional Groups

By LUCIO ANOARDI and UMBERTO TONELLATO*

(Centro 'Meccanismi di Reazioni Organiche' del C.N.R., Istituto di Chimica Organica, Universita' di Padova, 35100 Padova, Italy)

Summary Catalysis due to bifunctional 'chymotrypsin model' micelles implies a change in the effective nucleophilic site from the imidazole to the hydroxy function on going from the hydrolysis of esters to that of amides.

PREVIOUSLY,¹ micelles of cationic surfactants containing both an imidazole ring and a hydroxy-group (1) or one of these groups (2) and (3) were described as effective catalysts in the hydrolysis of esters. In the pH range 7—9 the imidazole ring is a much better micellar function than the hydroxy-group in promoting the hydrolysis of p-nitrophenyl acetate (PNPA) and hexanoate (PNPH) and the observed order of catalytic effectiveness is (1) \geq (2) \geq (3). The mechanistic mode of catalysis by bifunctional micelles composed of either (1) or a 1:1 mixture of (2) and (3) was suggested^{1b,2} to involve N-acylation of the imidazole ring followed by a rapid intramicellar intermolecular acyl transfer to the hydroxy group: an unusual ester \rightarrow amide \rightarrow ester chemical sequence.

 $R = C_{16}H_{33}$; (1) and (2), $X = Cl_{i}$ (3) $X = Br^{-1}$

We have extended the study of micellar catalysis due to (1)—(3) to the hydrolysis of some reactive amides:³ the acylimidazoles (4a) and (4b) and N-(n-butyl)-2,4-dinitrotrifluoroacetanilide (5). With these substrates, the order of catalytic effectiveness is $(3) \ge (1) \ge (2)$ and the nucleophilic site of bifunctional micelles is, from kinetic evidence, the hydroxy group.

Such a change in catalytic abilities is better illustrated by the data in the Table and by the rate-[surfactant] profiles in the Figure. Micellar effects on amide hydrolysis are strongly dependent on the type of buffer used and its concentration.⁴ Thus, at pH 8.4 values of $k_c/1 \text{ mol}^{-1} \text{ s}^{-1}$ and $k_{\psi max}/k_{buffer}^5$ for the hydrolysis of (5) in the presence of (3) are 910 and 1500 in borate buffer (conditions as in the Table) and 95 and 200 in Tris-buffer (conditions as in the Figure). However, in each case, whereas micellar (3) and

FIGURE. Rate-[surfactant] profiles for the hydrolysis of: (A) PNPH and (B) the anilide (5) in Tris-buffer ($I \ 0.05$ M), pH 8.4, 25 °C. (1), (2), (3), and (CTABr.)

(1) are effective functional catalysts, (2) behaves virtually as a non-functional surfactant like cetyltrimethylammonium bromide (CTABr) (see Figure).

The change in nucleophilic abilities of the two functions indicates a shift in the rate-limiting step of the general mechanism⁴ involving carbonyl attack by the anionic^{1,2,6} form of the micellar function -YH (equation 1). In the case of esters (LH = p-nitrophenol) the release of L⁻ from (6) is faster than its formation. In the case of amides having much poorer leaving groups L, the opposite is true and the $k_2: k_{-1}$ ratio becomes smaller on going from the hydroxy to the imidazole function. In the limiting case of

TABLE

Apparent catalytic rate constants,^a $k_c/1 \mod 1^{-1} s^{-1}$, for the hydrolysis of the esters PNPA and PNPH and the amides (4a), (4b), and (5) in 0.02 m-borate buffer, pH 8.4, at 25 °C.

	PNPA	PNPH	(4 a)	(4b)	(5)
(1)	22	640	7.8	31	510
(2)	11	390	b	b	ca. 40b
(3)	0.32	7	13.5	95	910

^a Calculated as described (see ref. 1) from the slope of the plot k_{ψ} vs. [surfactant] above the 'kinetic' critical micellar concentration. The k_{ψ} values for amides were obtained from spectral changes monitored at 243, 247, and 368 nm for (4a), (4b), and (5), respectively. ^b The value is too close to that of CTABr to be meaningful: see text.

(2) and acylimidazoles (4) both -Y and L of (6) are imidazolyl residues. However, -Y is a weaker base than L by ca. 3 pK units, as previously reported;¹ thus, the $k_2: k_{-1}$ value must be correspondingly low and the nucleophilic catalysis virtually absent as observed.

The present results, while providing experimental support for a two-step mechanistic hypothesis for the bifunctional micellar catalysis of ester hydrolysis, point to the flexibility of these bifunctional micelles. Although co-operative catalysis is absent, the two functional groups are used in the micellar pseudo-phase in an effective and complementary way depending on the substrate.

We thank Professor G. Modena for advice and Mr. E. Castiglione for technical assistance.

(Received, 15th February 1977; Com. 134.)

¹ (a) U. Tonellato, J.C.S. Perkin II, 1976, 771; (b) *ibid.*, 1977, in the press.
² R. A. Moss, R. C. Nahas, and S. Ramaswami, J. Amer. Chem. Soc., 1977, in the press; proceedings of the International Symposium on Micellization, Solubilization and Microemulsion, Albany, New York, ed. K. Mittal, Plenum Press, New York, 1976.
³ A rather unexplored field; see V. Gani, C. Lapinte, and P. Viout, Tetrahedron Letters, 1973, 4435 and ref. 5, p. 166.
⁴ Acid-base catalysis of micellar reactions is under investigation. See, for the hydrolysis in non-micellar solutions: D. G. Oakenfull, 1972, 94

K. Salvesen, and W. P. Jencks, J. Amer. Chem. Soc., 1971, 93, 188; R. L. Schowen, C. R. Hopper, and C. M. Bazikian, *ibid.*, 1972, 94, 3095; R. M. Pollack and T. C. Dumsha, *ibid.*, 1975, 97, 377, and references therein.

⁵ J. H. Fendler and E. J. Fendler, 'Catalysis in Micellar and Macromolecular Systems,' Academic Press, London, 1975. ⁶ K. Martinek, A. V. Levashov, and I. V. Berezin, *Tetrahedron Letters*, 1975, 3379; C. A. Bunton and S. Diaz, *J. Org. Chem.*, 1976, 41, 33; C. A. Bunton and H. McAneny, ibid., p. 36.